Reference: Zaborske JM, et al. (2009) Genome-wide Analysis of tRNA Charging and Activation of the eIF2 Kinase Gcn2p. J Biol Chem 284(37):25254-67

Reference Help

Abstract

When cells are subjected to nutritional stress, uncharged tRNAs accumulate and activate Gcn2p phosphorylation of eIF2 and the general amino acid control pathway. The Gcn2p regulatory domain homologous to histidyl-tRNA synthetases is proposed to bind to uncharged tRNA, directly contributing to activation of Gcn2p. Here we apply a microarray technology to analyze genome-wide changes in tRNA charging in yeast upon activation of Gcn2p in response to amino acid starvation and high salinity, a stress not directly linked to nutritional deficiency. This microarray technology is applicable for all eukaryotic cells. Strains were starved for histidine, leucine or tryptophan and shown to rapidly induce Gcn2p phosphorylation of eIF2. The relative charging level of all tRNAs was measured before and after starvation, and Gcn2p activation and the intracellular levels of the starved amino acid correlate with the observed decrease in tRNA charging. Interestingly, in some cases tRNAs not charged with the starved amino acid became deacylated more rapidly than tRNAs charged with the starved amino acid. This increase in uncharged tRNA levels occurred even though the intracellular levels for these non-starved amino acids remained unchanged. Additionally, treatment of a wild-type strain with high salinity stress showed transient changes in the charging of several different tRNAs. These results suggest that Gcn2p can be activated by many different tRNA species in the cell. These results also depict a complex cellular relationship between tRNA charging, amino acid availability and non-nutrient stress. These relationships are best revealed by simultaneous monitoring of the charging level of all tRNAs.

Reference Type
Journal Article
Authors
Zaborske JM, Narasimhan J, Jiang L, Wek SA, Dittmar KA, Freimoser F, Pan T, Wek RC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference