Take our Survey

Reference: Pelaez R, et al. (2009) Nuclear Export of the Yeast Hexokinase 2 Protein Requires the Xpo1 (Crm1)-dependent Pathway. J Biol Chem 284(31):20548-55

Reference Help

Abstract

Hexokinase 2 (Hxk2) from Saccharomyces cerevisiae was one of the first metabolic enzymes described as a multifunctional protein. Hxk2 has a double subcellular localization, it functions as a glycolytic enzyme in the cytoplasm and as a regulator of gene transcription of several Mig1-regulated genes in the nucleus. However, the mechanism by which Hxk2 enters and leaves the nucleus is still unknown. In low-glucose conditions, Hxk2 is phosphorylated at serine-14, but how this phosphorylation may affect glucose signalling is also unknown at the moment. Here, we report that the Hxk2 protein is an export substrate of the carrier protein Xpo1(Crm1). We also show that the Hxk2 nuclear export and the binding of Hxk2 and Xpo1 involve two leucine-rich NES, located between leucine-23 and isoleucine-33 (NES1) and leucine-310 and leucine-318 (NES2). We also show that the Hxk2 phosphorylation at serine-14 promotes Hxk2 export by facilitating the association of Hxk2 with Xpo1. Our study uncovers a new cargo for the Xpo1 yeast exportin and identifies Hxk2 phosphorylation at serine-14 as a regulatory mechanism that controls its nuclear exit in function of the glucose levels.

Reference Type
Journal Article
Authors
Pelaez R, Herrero P, Moreno F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference