Take our Survey

Reference: Lushchak OV, et al. (2009) Inactivation of genes encoding superoxide dismutase modifies yeast response to S-nitrosoglutathione-induced stress. Biochemistry (Mosc) 74(4):445-51

Reference Help

Abstract


Antioxidant enzymes can modify cell response to nitrosative stress induced, for example, by nitric oxide or compounds decomposing with its formation. Therefore, we investigated the effects of S-nitrosoglutathione (GSNO) on cell survival, activity of antioxidant enzymes, and concentrations of reduced and oxidized glutathione in parental and isogenic strains defective in Cu,Zn- or Mn-superoxide dismutases (Cu,Zn-SOD and Mn-SOD, respectively), or in both of them. Stress was induced by incubation of the yeast with 1-20 mM GSNO. The strains used demonstrated different sensitivity to GSNO. A Cu,Zn-SOD-defective strain survived the stress better than the parental strain, while the double mutant was the most sensitive to GSNO. The (*)NO-donor at low concentrations (1-5 mM) increased SOD activity, but its high concentrations (10 and 20 mM) decreased it. The activity of catalase in all strains was enhanced by GSNO. Inhibition of protein synthesis by cycloheximide did not prevent the activation of SOD, but it prevented the activation of catalase. These facts suggest that SOD was activated at a posttranslational level and catalase activity was enhanced via de novo synthesis. A GSNO-induced increase in oxidized glutathione level in the studied yeast strains might account for cell killing by GSNO due to the development of oxidative/nitrosative stress.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lushchak OV, Nykorak NZ, Ohdate T, Inoue Y, Lushchak VI
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference