Take our Survey

Reference: Zhu JQ, et al. (2009) Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Physiol Plant 136(4):407-25

Reference Help

Abstract


Inositol polyphosphate kinases play important roles in diverse cellular processes. In this study, the function of an inositol polyphosphate kinase gene homolog named ThIPK2 from a dicotyledonous halophyte Thellungiella halophila was investigated. The deduced translation product (ThIPK2) shares 85% identity with the Arabidopsis inositol polyphosphate kinase AtIPK2beta. Transient expression of ThIPK2-YFP fusion protein in tobacco (Nicotiana tabacum) protoplasts indicates that the protein is localized to the nucleus and plasma membrane, with a minor localization to the cytosol. Heterologous expression of ThIPK2 in ipk2Delta (also known as arg82Delta), a yeast mutant strain that lacks inositol polyphosphate multikinase (Ipk2) activity, rescued the mutant's salt-, osmotic- and temperature-sensitive growth defects. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed ubiquitous expression of ThIPK2 in various tissues, including roots, rosette leaves, cauline leaves, stem, flowers and siliques, and shoot ThIPK2 transcript was strongly induced by NaCl or mannitol in T. halophila as exhibited by real-time PCR analysis. Transgenic expression of ThIPK2 in Brassica napus led to significantly improved salt-, dehydration- and oxidative stress resistance. Furthermore, the transcripts of various stress responsive marker genes increased in ThIPK2 transgenic plants under salt stress condition. These results suggest that ThIPK2 is involved in plant stress responses, and for the first time demonstrate that ThIPK2 could be a useful candidate gene for improving drought and salt tolerance in important crop plants by genetic transformation.

Reference Type
Journal Article
Authors
Zhu JQ, Zhang JT, Tang RJ, Lv QD, Wang QQ, Yang L, Zhang HX
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference