Reference: Michelle C, et al. (2009) What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J Mol Evol 68(6):616-28

Reference Help

Abstract


Ubiquitin (Ub)-conjugating enzymes (E2) are key enzymes in ubiquitination or Ub-like modifications of proteins. We searched for all proteins belonging to the E2 enzyme super-family in seven species (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Arabidopsis thaliana) to identify families and to reconstruct each family's phylogeny. Our phylogenetic analysis of 207 genes led us to define 17 E2 families, with 37 E2 genes, in the human genome. The subdivision of E2 into four classes did not correspond to the phylogenetic tree. The sequence signature HPN (histidine-proline-asparagine), followed by a tryptophan residue at 16 (up to 29) amino acids, was highly conserved. When present, the active cysteine was found 7 to 8 amino acids from the C-terminal end of HPN. The secondary structures were characterized by a canonical alpha/beta fold. Only family 10 deviated from the common organization because the proteins were devoid of enzymatic activity. Family 7 had an insertion between beta strands 1 and 2; families 3, 5 and 14 had an insertion between the active cysteine and the conserved tryptophan. The three-dimensional data of these proteins highlight a strong structural conservation of the core domain. Our analysis shows that the primitive eukaryote ancestor possessed a diversified set of E2 enzymes, thus emphasizing the importance of the Ub pathway. This comprehensive overview of E2 enzymes emphasizes the diversity and evolution of this superfamily and helps clarify the nomenclature and true orthologies. A better understanding of the functions of these enzymes is necessary to decipher several human diseases.

Reference Type
Journal Article
Authors
Michelle C, Vourc'h P, Mignon L, Andres CR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference