Reference: Brinson RG, et al. (2009) Probing anomalous structural features in polypurine tract-containing RNA-DNA hybrids with neomycin B. Biochemistry 48(29):6988-97

Reference Help

Abstract

During (-)-strand DNA synthesis in retroviruses and Saccharomyces cerevisiae LTR-retrotransposons, a purine rich region of the RNA template, known as the polypurine tract (PPT) is resistant to RNase H-mediated hydrolysis and subsequently serves as a primer for (+)-strand, DNA-dependent DNA synthesis. Although HIV-1 and Ty3 PPT sequences share no sequence similarity beyond the fact that both include runs of purine ribonucleotides, it has been suggested that these PPTs are processed by their cognate reverse transcriptases (RTs) through a common molecular mechanism. Here, we have used the aminoglycoside neomycin B (NB) to examine which structural features of the Ty3 PPT contribute to specific recognition and processing by its cognate RT. Using high-resolution NMR, direct infusion FTICR mass spectrometry and isothermal titration calorimetry, we show that NB binds preferentially and selectively adjacent to the Ty3 3' PPT-U3 cleavage junction and in an upstream 5' region where the thumb subdomain of Ty3 RT putatively grips the substrate. Regions highlighted by NB on the Ty3 PPT are similar to those previously identified on the HIV-1 PPT sequence that are implicated as contact points for substrate binding by its RT. Our findings thus support the notion that common structural features of lentiviral and LTR-retrotransposon PPTs facilitate the interaction with their cognate RT.

Reference Type
Journal Article
Authors
Brinson RG, Turner KB, Yi-Brunozzi HY, Le Grice SF, Fabris D, Marino JP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference