Reference: Urzica E, et al. (2009) Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1. Biochemistry 48(22):4946-58

Reference Help

Abstract


Iron-sulfur (Fe/S) protein maturation in the eukaryotic cytosol and nucleus requires conserved components of the essential CIA machinery. The CIA protein Nar1 performs a specific function in transferring an Fe/S cluster that is assembled de novo on the Cfd1-Nbp35 scaffold to apoproteins. Here, we used systematic site-directed mutagenesis and a combination of in vitro and in vivo studies to show that Nar1 holds two Fe/S clusters at conserved N- and C-terminal cysteine motifs. A wealth of biochemical studies suggests that the assembly of these Fe/S clusters on Nar1 cannot be studied in Escherichia coli, as the recombinant protein does not contain the native Fe/S clusters. We therefore followed Fe/S cluster incorporation directly in yeast by a (55)Fe radiolabeling method in vivo, and we measured the functional consequences of Nar1 mutations in the assembly of cytosolic Fe/S proteins. We find that both Fe/S clusters are essential for Nar1 function and cell viability. Molecular modeling using a structurally but not functionally related bacterial iron-only hydrogenase as a template provided compelling structural explanations for our mutational data. The C-terminal Fe/S cluster is stably buried within Nar1, whereas the N-terminal one is exposed at the protein surface and hence may be more easily lost. Insertion of an Fe/S cluster into the C-terminal location depends on the N-terminal motif, suggesting the participation of the latter motif in the assembly process of the C-terminal cluster. The vicinity of the two Fe/S centers suggests a close functional cooperation during cytosolic Fe/S protein maturation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Urzica E, Pierik AJ, Mühlenhoff U, Lill R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference