Reference: Courchesne WE, et al. (2009) Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae. Can J Microbiol 55(3):288-303

Reference Help

Abstract


We used a proteomic approach to study effects of amiodarone on cells of the yeast Saccharomyces cerevisiae. Amiodarone has been shown to have antifungal activity in vitro and causes a massive increase in cytoplasmic calcium levels ([Ca2+]cyt). Proteomic analysis of cells exposed to amiodarone show that this drug elicits stress responses and points to involvement of proteins associated with the cell wall. We tested several of those proteins for involvement in the Ca2+ flux. In particular, the amiodarone-induced Ca2+ flux was decreased in bgl2Delta cells, which have altered levels of beta-glucan and chitin. The involvement of the cell wall in the Ca2+ flux induced by amiodarone treatment was tested by addition of yeast cell-wall components. While mannan inhibited the rise in [Ca2+]cyt, beta-glucan potentiated the Ca2+ flux by 4.5-fold, providing evidence that the cell wall is directly involved in controlling this Ca2+ flux. This conclusion is corroborated by the inhibition of the Ca2+ flux by calcofluor, which is known to bind to cell-wall chitin and inhibit cell growth. Zymolyase treatment altered the kinetics of amiodarone-induced calcium flux and uncoupled the inhibitory effect of calcofluor. These effects demonstrate that the cell-wall beta-glucan regulates calcium flux elicited by amiodarone.

Reference Type
Journal Article
Authors
Courchesne WE, Tunc M, Liao S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference