Reference: Millett F and Durham B (2009) Chapter 5 Use of ruthenium photooxidation techniques to study electron transfer in the cytochrome bc1 complex. Methods Enzymol 456:95-109

Reference Help

Abstract


Ruthenium photooxidation methods are presented to study electron transfer between the cytochrome bc(1) complex and cytochrome c and within the cytochrome bc(1) complex. Methods are described to prepare a ruthenium cytochrome c derivative, Ru(z)-39-Cc, by labeling the single sulfhydryl on yeast H39C;C102T iso-1-Cc with the reagent Ru(bpz)(2)(4-bromomethyl-4'-methylbipyridine). The ruthenium complex attached to Cys-39 on the opposite side of Cc from the heme crevice does not affect the interaction with cyt bc(1). Laser excitation of reduced Ru(z)-39-Cc results in photooxidation of heme c within 1 microsec with a yield of 20%. Flash photolysis of a 1:1 complex between reduced yeast cytochrome bc(1) and Ru(z)-39-Cc leads to electron transfer from heme c(1) to heme c with a rate constant of 1.4 x 10(4) s(-1). Methods are described for the use of the ruthenium dimer, Ru(2)D, to photooxidize cyt c(1) in the cytochrome bc(1) complex within 1 microsec with a yield of 20%. Electron transfer from the Rieske iron-sulfur center [2Fe2S] to cyt c(1) was detected with a rate constant of 6 x 10(4) s(-1) in R. sphaeroides cyt bc(1) with this method. This electron transfer step is rate-limited by the rotation of the Rieske iron-sulfur protein in a conformational gating mechanism. This method provides critical information on the dynamics of rotation of the iron-sulfur protein (ISP) as it transfers electrons from QH(2) in the Q(o) site to cyt c(1). These ruthenium photooxidation methods can be used to measure many of the electron transfer reactions in cytochrome bc(1) complexes from any source.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Millett F, Durham B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference