Reference: Ding MG, et al. (2009) Chapter 27 An improved method for introducing point mutations into the mitochondrial cytochrome B gene to facilitate studying the role of cytochrome B in the formation of reactive oxygen species. Methods Enzymol 456:491-506

Reference Help

Abstract


Cytochrome b is a pivotal protein subunit of the cytochrome bc(1) complex and forms the ubiquinol oxidation site in the enzyme that is generally thought to be the primary site where electrons are aberrantly diverted from the enzyme, reacting with oxygen to form superoxide anion. In addition, recent studies have shown that mutations in cytochrome b can substantially increase rates of oxygen radical formation by the bc(1) complex. It would, thus, be advantageous to be able to manipulate cytochrome b by mutagenesis of the cytochrome b gene to better understand the role of cytochrome b in oxygen radical formation. Cytochrome b is encoded in the mitochondrial genome in eukaryotic cells, and introduction of point mutations into the gene is generally cumbersome because of the tedious screening process for positive clones. In addition, previously it has been especially difficult to introduce point mutations that lead to loss of respiratory function, as might be expected of mutations that markedly enhance oxygen radical formation. To more efficiently introduce amino acid changes into cytochrome b we have devised a method for mutagenesis of the Saccharomyces cerevisiae mitochondrial cytochrome b gene that uses a recoded ARG8 gene as a "placeholder" for the wild-type b gene. In this method ARG8, a gene that is normally encoded by nuclear DNA, replaces the naturally occurring mitochondrial cytochrome b gene, resulting in ARG8 expressed from the mitochondrial genome (ARG8(m)). Subsequently replacing ARG8(m) with mutated versions of cytochrome b results in arginine auxotrophy. Respiratory-competent cytochrome b mutants can be selected directly by virtue of their ability to restore growth on nonfermentable substrates. If the mutated cytochrome b is nonfunctional, the presence of the COX2 respiratory gene marker on the mitochondrial transforming plasmid enables screening for cytochrome b mutants with a stringent respiratory deficiency (mit(-)).

Reference Type
Journal Article
Authors
Ding MG, Butler CA, Saracco SA, Fox TD, Godard F, di Rago JP, Trumpower BL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference