Take our Survey

Reference: Lehner K and Jinks-Robertson S (2009) The mismatch repair system promotes DNA polymerase zeta-dependent translesion synthesis in yeast. Proc Natl Acad Sci U S A 106(14):5749-54

Reference Help

Abstract


DNA lesions that block replication can be bypassed by error-prone or error-free mechanisms. Error-prone mechanisms rely on specialized translesion synthesis (TLS) DNA polymerases that directly replicate over the lesion, whereas error-free pathways use an undamaged duplex as a template for lesion bypass. In the yeast Saccharomyces cerevisiae, most mutagenic TLS of spontaneous and induced DNA damage relies on DNA polymerase zeta (Polzeta) activity. Here, we use a distinct mutational signature produced by Polzeta in a frameshift-reversion assay to examine the role of the yeast mismatch repair (MMR) system in regulating Polzeta-dependent mutagenesis. Whereas MMR normally reduces mutagenesis by removing errors introduced by replicative DNA polymerases, we find that the MMR system is required for Polzeta-dependent mutagenesis. In the absence of homologous recombination, however, the error-prone Polzeta pathway is not affected by MMR status. These results demonstrate that MMR promotes Polzeta-dependent mutagenesis by inhibiting an alternative, error-free pathway that depends on homologous recombination. Finally, in contrast to its ability to remove mistakes made by replicative DNA polymerases, we show that MMR fails to efficiently correct errors introduced by Polzeta.

Reference Type
Journal Article
Authors
Lehner K, Jinks-Robertson S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference