Take our Survey

Reference: McNairn AJ and Gerton JL (2009) Intersection of ChIP and FLIP, genomic methods to study the dynamics of the cohesin proteins. Chromosome Res 17(2):155-63

Reference Help

Abstract


The evolutionarily conserved cohesin proteins Smc1, Smc3, Rad21 (Mcd1), and Scc3 function in the cohesin complex that provides the basis for chromosome cohesion and is involved in gene regulation. Understanding how these proteins link together the genome requires the use of whole-genome approaches to study the molecular mechanisms of these essential proteins. While chromatin immunoprecipitation followed by DNA microarray (ChIP-chip) studies have provided a snapshot in time of where these proteins associate with various genomes, the cohesin proteins are dynamic in their localization and interactions on chromatin. Study of the dynamic nature of these proteins requires approaches such as live cell imaging. We present evidence from fluorescence loss in photobleaching (FLIP) experiments in budding yeast that the decay constant of each cohesin subunit is approximately 60-90 s in interphase. The decay constant on chromatin increases from G(1) to S phase to metaphase, consistent with the interaction with chromatin becoming more stable once chromosomes are cohered. A small population of Smc3 at a position consistent with centromeric location has a longer decay constant than bulk Smc3. The characterization of the interaction of cohesin with chromatin, in terms of both its position and its dynamics, may be key to understanding how this protein complex contributes to chromosome segregation and gene regulation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
McNairn AJ, Gerton JL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference