Reference: Dardalhon M, et al. (2009) Slt2 (Mpk1) MAP kinase is involved in the response of Saccharomyces cerevisiae to 8-methoxypsoralen plus UVA. J Photochem Photobiol B 95(3):148-55

Reference Help

Abstract


The bifunctional furocoumarin 8-methoxypsoralen (8-MOP) is a well established drug in the photochemotherapy of psoriasis and other skin diseases. In eukaryotic cells, this compound intercalates into DNA and undergoes photocycloaddition with pyrimidines to form monoadducts and interstrand crosslinks initiating a cascade of events leading to cytotoxic, mutagenic and carcinogenic responses. In yeast cells, exposure to 8-MOP plus UVA induces transcription of a large set of genes, and cellular reaction is different from an overall DNA damage response and specific to 8-MOP/UVA [M. Dardalhon, W. Lin, A. Nicolas, D. Averbeck, Specific transcriptional responses induced by 8-methoxypsoralen and UVA in yeast, FEMS Yeast Res. 7 (2007) 866-878]. To further define the relationship between induced genes and genotoxic consequences after 8-MOP/UVA treatment, the survival responses of mutants deleted for genes that are specifically induced by 8-MOP plus UVA were analysed in terms of survival. Six mutants deleted for RAD51, RAD54, DUN1, DIN7, already known to be implicated in DNA damage responses, and for SLT2/MPK1 and PDE2 involved in cell wall stress responses, were found sensitive to 8-MOP plus UVA treatment. Further characterization of slt2 mutant provides evidence for the existence of an 8-MOP/UVA response in yeast in which the yeast Slt2 MAPK pathway is implicated. Activation by 8-MOP plus UVA of this MAP kinase previously observed at the transcriptional level is now confirmed at the protein level. In addition to sensitivity to 8-MOP/UVA, yeast cells lacking SLT2 show reduced survival after 3-carbethoxypsoralen plus UVA and 1,6-dioxapyrene plus UVA. Osmotic support could suppress the sensitivities to these genotoxic agents, suggesting that these sensitivities are related to cell integrity defects and/or cell wall defects.

Reference Type
Journal Article
Authors
Dardalhon M, Agoutin B, Watzinger M, Averbeck D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference