Take our Survey

Reference: Kraft C, et al. (2009) Selective types of autophagy in yeast. Biochim Biophys Acta 1793(9):1404-12

Reference Help

Abstract

Autophagy is the process through which cytosol and organelles are sequestered into a double-membrane vesicle called an autophagosome and delivered to the vacuole/lysosome for breakdown and recycling. One of its primary roles in unicellular organisms is to regulate intracellular homeostasis and to adjust organelle numbers in response to stress such as changes in nutrient availability. In higher eukaryotes, autophagy plays also an important role in stress-response, development, cell differentiation, immunity and tumor suppression. Importantly, a misregulation in this catabolic pathway is associated with diseases such as cancer, neurodegeneration and myopathies. For a long time, starvation-induced autophagy has been considered a non-selective pathway, however, numerous recent observations revealed that autophagy can also selectively eliminate specific proteins, protein complexes and organelles. Most of these studies used yeast Saccharomyces cerevisiae as a model organism. In this compendium, we will review what is known about the mechanisms and roles of selective types of autophagy in yeast and highlight possible connections of these pathways with human diseases. In addition, we will discuss some selective types of autophagy, which have so far only been described in higher eukaryotes.

Reference Type
Journal Article
Authors
Kraft C, Reggiori F, Peter M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference