Take our Survey

Reference: O'Sullivan JM, et al. (2009) Repeated elements coordinate the spatial organization of the yeast genome. Yeast 26(2):125-38

Reference Help

Abstract

The spatial organization of the chromosomes is crucial for gene expression and development. Inter- and intrachromosomal interactions form a crucial part of this epigenomic regulatory system. Here we use circular chromosome conformation capture-on-chip (4C) to identify interactions between repetitive and non-repetitive loci within the yeast genome. The interacting regions occur in non-randomly distributed clusters. Furthermore, the SIR2 histone deacetylase has opposing roles in the organization of the inter- or intrachromosomal interactions. These data establish a dynamic domain model for yeast genome organization. Moreover, they point to the repeated elements playing a central role in the dynamic organization of genome architecture. Copyright (c) 2009 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
O'Sullivan JM, Sontam DM, Grierson R, Jones B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference