Reference: Su Z, et al. (2009) Mechanical Force and Cytoplasmic Ca(2+) Activate Yeast TRPY1 in Parallel. J Membr Biol 227(3):141-50

Reference Help

Abstract


The ability to sense mechanical and osmotic stimuli is vital to all organisms from mammals to bacteria. Members of the transient receptor potential (TRP) ion-channel family have attracted intense attention for their involvement in mechanosensation. The yeast homologue TRPY1 can clearly be activated by hypertonic shock in vivo and by stretch force under patch clamp. Like its animal counterparts, TRPY1 is polymodal, being gated by membrane stretch force and by cytoplasmic Ca(2+). Here, we investigated how these two gating principles interact. We found that stretch force can induce some channel activation without cytoplasmic Ca(2+). Tens of micromolar Ca(2+) greatly enhance the observed force-induced activities, with open probabilities following well the Boltzmann distribution, in which the two gating energies are summed as exponents. To map this formalism to structures, we found Ca(2+)-binding proteins such as calmodulin or calcineurin to be unnecessary. However, removing a dense cluster of negative charges in the C-terminal cytoplasmic domain of TRPY1 greatly diminishes the Ca(2+) activation as well as its influence on force activation. We also found a strategic point upstream of this charge cluster, at which insertion of amino acids weakens Ca(2+) activation considerably but leaves the mechanosensitivity nearly intact. These results led to a structure-function model in which Ca(2+) binding to the cytoplasmic domain and stretching of the membrane-embedded domain both generate gating force, reaching the gate in parallel.

Reference Type
Journal Article
Authors
Su Z, Zhou X, Loukin SH, Saimi Y, Kung C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference