Take our Survey

Reference: Leadsham JE, et al. (2009) Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci 122(Pt 5):706-15

Reference Help

Abstract

Elucidating the mechanisms by which eukaryotic cells coordinate environmental signals with intracellular 'fate' decisions, such as apoptosis, remains one of the important challenges facing cell biologists. It has recently emerged that the dynamic nature of the actin cytoskeleton is an important factor in the linkage of sensation of extracellular stimuli to signalling mechanisms that regulate programmed cell death. In yeast, actin has been shown to play a role in the regulation of apoptosis as cells prepare themselves for quiescence in the face of nutritional exhaustion, by facilitating the shutdown of Ras-cAMP-PKA pathway activity. Here, we demonstrate that the loss of Whi2p function, a protein known to influence cell cycle exit under conditions of nutritional stress, leads to cell death in yeast that displays the hallmarks of actin-mediated apoptosis. We show that actin-mediated apoptosis occurs as a result of inappropriate Ras-cAMP-PKA activity in Deltawhi2 cells. Cells lacking Whi2p function exhibit an aberrant accumulation of activated Ras2 at the mitochondria in response to nutritional depletion. This study provides evidence that the shutdown of cAMP-PKA signalling activity in wild-type cells involves Whi2p-dependent targeting of Ras2p to the vacuole for proteolysis. We also demonstrate for the first time that Whi2p-dependent regulation of cAMP-PKA signalling plays a physiological role in the differentiation of yeast colonies by facilitating elaboration of distinct zones of cell death.

Reference Type
Journal Article
Authors
Leadsham JE, Miller K, Ayscough KR, Colombo S, Martegani E, Sudbery P, Gourlay CW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference