Reference: Vachova L, et al. (2009) Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11(2):494-504

Reference Help

Abstract


Microorganisms in nature form organized multicellular structures (colonies, biofilms) possessing properties absent in individual cells. These are often related to the better ability of communities to survive long-lasting starvation and stress and include mechanisms of adaptation and cell specialization. Thus, yeast colonies pass through distinct developmental phases characterized by changes in pH and the production of ammonia-signalling molecules. Here, we show that Saccharomyces cerevisiae colony transition between major developmental phases (first acidic, alkali, second acidic) is accompanied by striking transcription changes, while the development within each particular phase is guided mostly at the post-transcriptional level. First- and second-acidic-phase colonies markedly differ. Second-acidic-phase colonies maintain the adaptive metabolism activated in the ammonia-producing period, supplemented by additional changes, which begin after colonies enter the second acidic phase. Cells with particular properties are not homogenously dispersed throughout the colony population, but localize to specific colony regions. Thus, cells located at the colony margin are able to export higher amounts of ammonium than central cells and to activate an adaptive metabolism. In contrast, central chronologically aged cells are unable to undergo these changes but they maintain higher levels of various stress-defence enzymes. These divergent properties of both cell types determine their consequent dissimilar fate.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference