Reference: Verbelen PJ, et al. (2009) The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. FEMS Yeast Res 9(2):226-39

Reference Help

Abstract


Abstract Yeast preoxygenation can confer important advantages to brewery fermentations by means of omitting the need to oxygenate the wort. However, the impact of yeast preoxygenation on yeast metabolism has never been assessed systematically. Therefore, expression analysis was performed of genes that are of importance in oxygen-dependent pathways, oxidative stress response and general stress response during 8 h of preoxygenation. The gene expressions of both the important transcription factors Hap1 and Rox1, involved in oxygen sensing, were mainly increased in the first 3 h, while YAP1 expression, which is involved in the oxidative stress response, increased drastically only in the first 45 min. The results also show that stress-responsive genes (HSP12, SSA3, PAU5, SOD1, SOD2, CTA1 and CTT1) were induced during the process, together with the accumulation of trehalose. The accumulation of ergosterol and unsaturated fatty acids was accompanied by the expression of ERG1, ERG11 and OLE1. Genes involved in respiration (QCR9, COX15, CYC1 and CYC7) also increased during preoxygenation. Yeast viability did not decrease during the process, and the fermentation performance of the yeast reached a maximum after 5 h of preoxygenation. These results suggest that yeast cells acquire a stress response along the preoxygenation period, which makes them more resistant against the stressful conditions of the preoxygenation process and the subsequent fermentation.

Reference Type
Journal Article
Authors
Verbelen PJ, Depraetere SA, Winderickx J, Delvaux FR, Delvaux F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference