Take our Survey

Reference: Footz TK, et al. (2009) Glaucoma-associated WDR36 variants encode functional defects in a yeast model system. Hum Mol Genet 18(7):1276-87

Reference Help

Abstract


Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. POAG is associated with a characteristic progression of changes to ocular morphology and degeneration at the optic nerve head with loss of visual fields. Physical mapping efforts identified genomic loci in which to search for causative POAG gene mutations. WDR36, at locus GLC1G, was initially identified as a gene with a low frequency of non-synonymous sequence variations that were exclusive to adult-onset POAG patients. It has since been shown that rare WDR36 sequence variants are also present in the normal population at similarly low frequencies. The lack of a consistent genotype:phenotype correlation prompted us to investigate the functional consequences of WDR36 sequence variations. WDR36 is involved in rRNA processing, a critical step in ribosome biogenesis, and is very similar to yeast Utp21p which is a member of the small subunit processome complex responsible for maturation of 18S rRNA. We therefore developed a yeast model system to test the functional and phenotypic consequences of POAG-associated sequence variants introduced into UTP21. Alone, the POAG variants did not produce any significant defects in cell viability or rRNA processing. However, when combined with disruption of STI1 (which synthetically interacts with UTP21), five of the eleven tested variants had increased or decreased cell viability which corresponded with reduced or elevated levels of pre-rRNA, respectively. These results demonstrate that, in the correct genetic background, WDR36 sequence variants can lead to an altered cellular phenotype, supporting the theory that WDR36 participates in polygenic forms of glaucoma.

Reference Type
Journal Article
Authors
Footz TK, Johnson JL, Dubois S, Boivin N, Raymond V, Walter MA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference