Take our Survey

Reference: Daniel JH (2009) A fitness-based interferential genetics approach using hypertoxic/inactive gene alleles as references. Mol Genet Genomics 281(4):437-45

Reference Help

Abstract

Genetics, genomics, and biochemistry have all been of immense help in characterizing macromolecular cell entities and their interactions. Still, obtaining an overall picture of the functioning of even a simple unicellular species has remained a challenging task. One possible way to obtain a comprehensive picture has been described: by capitalizing on the observation that the overexpression on a multicopy plasmid of apparently any wild-type gene in yeast can lead to some negative effect on cell fitness (referring to the concept of "gene toxicity"), the FIG (fitness-based interferential genetics) approach was devised for selecting normal genes that are in antagonistic (and potentially also agonistic) relationship with a particular gene used as a reference. Herein, we take a complementary approach to FIG, by first selecting a "hypertoxic" allele of the reference gene-which easily provides the general possibility of obtaining gene products with the remarkable property of being inactive without altering their macromolecular interactivity-and then looking for the genes that interact functionally with this reference. Thus, FIG and the present approach (Trap-FIG), both taking advantage of the negative effects on cell fitness induced by various quantitative modulations in cellular networks, could potentially pave the way for the emergence of efficient in situ biochemistry.

Reference Type
Journal Article
Authors
Daniel JH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference