Reference: Patury S, et al. (2009) Conditional nuclear import and export of yeast proteins using a chemical inducer of dimerization. Cell Biochem Biophys 53(3):127-34

Reference Help

Abstract


In eukaryotes, reversible shuttling between the nucleus and cytoplasm is an important regulatory mechanism, particularly for many kinases and transcription factors. Inspired by the natural system, we recently developed a technology to control protein position in budding yeast using a chemical inducer of dimerization (CID). In this method, a nuclear export or localization signal is reversibly appended to a protein of interest by the CID, which effectively places its subcellular location under direct control of the chemical stimulus. Here, we explicitly tested the ability of this system to direct the nucleocytoplasmic transport of a panel of 16 representative kinases and transcription factors. From this set, we found that 12 targets (75%) are susceptible to re-positioning, suggesting that this method might be applicable to a range of targets. Interestingly, the four proteins that resisted mislocalization (Fun20p, Hcm1p, Pho4p, and Ste12p) are known to engage in a large number of protein-protein contacts. We suspect that, for these highly connected targets, the strength of the chemical signal may be insufficient to drive mislocalization and that proteins with relatively few partners might be most amenable to this approach. Collectively, these studies provide a necessary framework for the design of large-scale applications.

Reference Type
Journal Article
Authors
Patury S, Geda P, Dobry CJ, Kumar A, Gestwicki JE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference