Take our Survey

Reference: Lotito L, et al. (2009) A specific transcriptional response of yeast cells to camptothecin dependent on the Swi4 and Mbp1 factors. Eur J Pharmacol 603(1-3):29-36

Reference Help

Abstract


Topoisomerase I (Top1) is the specific target of the anticancer drug camptothecin (CPT) that interferes with enzyme activity promoting Top1-mediated DNA breaks and inhibition of DNA and RNA synthesis. To define the specific transcriptional response to CPT, we have determined the CPT-altered transcription profiles in yeast by using a relatively low concentration of the drug. CPT could alter global expression profiles only if a catalytically active Top1p was expressed in the cell, demonstrating that drug interference with Top1 was the sole trigger of the response. A total of 95 genes showed a statistically-significant alterations. Gene Ontology term analyses suggested that the cell response was mainly to the inhibition of nucleic acid synthesis and cell cycle progression. Promoter sequence analyses of the 22 up-regulated genes and expression studies in gene-deleted strains showed that the transcription factors, Swi4p and Mbp1p, mediate at least partially the transcriptional response to CPT. The MBP1 gene deletion abrogates a transient cell growth delay caused by CPT whereas the SWI4 gene deletion increases yeast resistance to CPT. Thus, the findings show that yeast cells have a highly selective and sensitive transcriptional response to CPT depending on SWI4 and MBP1 genes suggesting a complex regulation of cell cycle progression by the two factors in the presence of CPT.

Reference Type
Journal Article
Authors
Lotito L, Russo A, Bueno S, Chillemi G, Fogli MV, Capranico G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference