Take our Survey

Reference: Riechers SP, et al. (2009) Defects in intracellular trafficking and endocytic/vacuolar acidification determine the efficiency of endocytotic DNA uptake in yeast. J Cell Biochem 106(2):327-36

Reference Help

Abstract


The yeast Saccharomyces cerevisiae is a standard model system to study endocytosis. Here we describe the examination of a representative subset of deletion mutants to identify and locate steps in endocytic transport, endosomal/lysosomal acidification and in intracellular transport of hydrolases in non-viral transfection processes. When transport in late endocytosis is inhibited, transfection efficiency is significantly enhanced. Similarly, transfection efficiency is enhanced when the pH-value of the endosomal/vacuolar system is modified. Transfection efficiency is furthermore elevated when the Na(+)/K(+) transport in the endosomal system is disturbed. Finally, we observe enhanced transfection efficiency in mutants disturbed in the CVT/autophagy pathway and in hydrolase transport to the vacuole. In summary, non-viral transfection efficiency can be significantly increased by either (i) inhibiting the transport of endocytosed material before it enters the vacuole, or (ii) inducing a non-natural pH-value of the endosomal/vacuolar system, or (iii) slowing down degradative processes by inhibiting vacuolar hydrolases or the transport between Golgi and late endosome/vacuole. J. Cell. Biochem. (c) 2008 Wiley-Liss, Inc.

Reference Type
Journal Article
Authors
Riechers SP, Stahl U, Lang C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference