Take our Survey

Reference: Jin Y, et al. (2009) Genetic and Genomewide Analysis of Simultaneous Mutations in Acetylated and Methylated Lysine Residues in Histone H3 in Saccharomyces cerevisiae. Genetics 181(2):461-72

Reference Help

Abstract

Acetylated and methylated lysine residues in histone H3 play important roles in regulating yeast gene expression and other cellular processes. Previous studies have suggested that histone H3 acetylated and methylated lysine residues may functionally interact through interdependent pathways to regulate gene transcription. A common genetic test for functional interdependence is to characterize the phenotype of a double mutant. Using this strategy, we tested the genetic interaction between histone H3 mutant alleles that simultaneously eliminate acetylated or methylated lysine residues. Our results indicate that mutation of histone H3 acetylated lysine residues alleviates growth phenotypes exhibited by the H3 methylated lysine mutant. In contrast, histone H3 acetylated and methylated lysine mutants display largely independent effects on yeast gene expression. Intriguingly, these expression changes are preferentially associated with chromosomal regions in which histone H3 lysine residues are hypo-acetylated and hypo-methylated. Finally, we show that the acetylated and methylated lysine mutants have strikingly different effects on the binding of Sir4 to yeast telomeres, suggesting that histone H3 acetylated lysine residues regulate yeast silencing through a mechanism independent of SIR binding.

Reference Type
Journal Article
Authors
Jin Y, Rodriguez AM, Wyrick J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference