Reference: Vaughan CK, et al. (2009) A common conformationally coupled ATPase mechanism for yeast and human cytoplasmic HSP90s. FEBS J 276(1):199-209

Reference Help

Abstract


The conformationally coupled mechanism by which ATP is utilized by yeast Hsp90 is now well characterized. In contrast, ATP utilization by human Hsp90s is less well studied, and appears to operate differently. To resolve these conflicting models, we have conducted a side-by-side biochemical analysis in a series of mutant yeast and human Hsp90s that have been both mechanistically and structurally characterized with regard to the crystal structure of the yeast Hsp90 protein. We show that each monomer of the human Hsp90 dimer is mutually dependent on the other for ATPase activity. Fluorescence studies confirmed that the N-terminal domains of Hsp90beta come into close association with each other. Mutations that directly affect the conformational dynamics of the ATP-lid segment had marked effects, with T31I (yeast T22I) and A116N (yeast A107N) stimulating, and T110I (yeast T101I) inhibiting, human and yeast ATPase activity to similar extents, showing that ATP-dependent lid closure is a key rate-determining step in both systems. Mutation of residues implicated in N-terminal dimerization of yeast Hsp90 (L15R and L18R in yeast, L24R and L27R in humans) significantly reduced the ATPase activity of yeast and human Hsp90s, showing that ATP-dependent association of the N-terminal domains in the Hsp90 dimer is also essential in both systems. Furthermore, cross-linking studies of the hyper-active yeast A107N and human A116N ATP-lid mutants showed enhanced dimerization, suggesting that N-terminal association is a direct consequence of ATP binding and lid closure in both systems.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Vaughan CK, Piper PW, Pearl LH, Prodromou C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference