Take our Survey

Reference: Marchi E and Cavalieri D (2008) Yeast as a model to investigate the mitochondrial role in adaptation to dietary fat and calorie surplus. Genes Nutr 3(3-4):159-66

Reference Help

Abstract


Several research strategies are focused towards understanding the genetic basis and molecular mechanisms that regulate uptake, synthesis, deposition, and mobilization of lipids, in the context of energy homeostasis. Because of the complexity of the problem, major input comes from the use of model systems. The aim of this work was to test the feasibility of using yeast as a model organism for studies related to dietary challenges due to high fat diet and investigate the correlation between FA metabolism and oxidative metabolism. In particular, we ask to what extent the utilization of oleic acid is dependent on mitochondrial function. We studied growth on oleic acid as a sole carbon source, and oleate stress (growth in 2 and 5% oleate) in both laboratory (BY4741 wild-type and Deltasco1, Deltasco2, Deltatgl3, Deltatgl4 mutants) and natural strains, comparing the growth phenotypes with the respiratory behaviour for each strain. We confirmed that respiratory competence is fundamental for growth on oleic acid, since the respiratory deficient mutant Deltasco1 was unable to grow on oleic acid. In order to understand if the ability to use oleate as carbon source and adapt to high oleate concentrations is a general trait for the Saccharomyces cerevisiae genus, we also studied some natural strains, both diploid and haploid, identifying two meiotic derivatives of SGU90 as unable to grow in oleic acid as a sole carbon source. We investigate some aspects of mitochondrial metabolism in order to gain insights on this new finding.

Reference Type
Journal Article
Authors
Marchi E, Cavalieri D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference