Reference: Vigentini I, et al. (2009) Polymorphisms of Saccharomyces cerevisiae genes involved in wine production. Curr Microbiol 58(3):211-8

Reference Help

Abstract


The setting up of new molecular methods for Saccharomyces cerevisiae typing is valuable in enology. Actually, the ability to discriminate different strains in wine making can have a benefit both for the control of the fermentation process and for the preservation of wine typicity. This study focused on the screening of single-nucleotide polymorphisms in genes involved in wine production that could evolve rapidly considering the selective pressure of the isolation environment. Preliminary screening of 30 genes in silico was performed, followed by the selection of 10 loci belonging to 8 genes. The sequence analysis showed a low polymorphism and a degree of heterozygosity. However, a new potential molecular target was recognized in the TPS1 gene coding for the trehalose-6-phosphate synthase enzyme involved in the ethanol resistance mechanism. This gene showed a 1.42% sequence diversity with seven different nucleotide substitutions. Moreover, classic techniques were applied to a collection of 50 S. cerevisiae isolates, mostly with enologic origin. Our results confirmed that the wine making was not carried out only by the inoculated commercial starter because indigenous strains of S. cerevisiae present during fermentation were detected. In addition, a high genetic relationship among some commercial cultures was found, highlighting imprecision or fraudulent practices by starter manufacturers.

Reference Type
Journal Article
Authors
Vigentini I, Fracassetti D, Picozzi C, Foschino R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference