Reference: Cheng JS, et al. (2008) Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Appl Microbiol Biotechnol 81(2):327-38

Reference Help

Abstract


A robust Saccharomyces cerevisiae strain has been widely applied in continuous and batch/fed-batch industrial fermentation. However, little is known about the molecular basis of fermentative behavior of this strain in the two realistic fermentation processes. In this paper, we presented comparative proteomic profiling of the industrial yeast in the industrial fermentation processes. The expression levels of most identified protein were closely interrelated with the different stages of fermentation processes. Our results indicate that, among the 47 identified protein spots, 17 of them belonging to 12 enzymes were involved in pentose phosphate, glycolysis, and gluconeogenesis pathways and glycerol biosynthetic process, indicating that a number of pathways will need to be inactivated to improve ethanol production. The differential expressions of eight oxidative response and heat-shock proteins were also identified, suggesting that it is necessary to keep the correct cellular redox or osmotic state in the two industrial fermentation processes. Moreover, there are significant differences in changes of protein levels between the two industrial fermentation processes, especially these proteins associated with the glycolysis and gluconeogenesis pathways. These findings provide a molecular understanding of physiological adaptation of industrial strain for optimizing the performance of industrial bioethanol fermentation.

Reference Type
Journal Article
Authors
Cheng JS, Qiao B, Yuan YJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference