Reference: Gao X, et al. (2008) Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom. Genomics 92(6):457-63

Reference Help

Abstract


Protein phosphorylation is one of the most essential post-translational modifications (PTMs), and orchestrates a variety of cellular functions and processes. Besides experimental studies, numerous computational predictors implemented in various algorithms have been developed for phosphorylation sites prediction. However, large-scale predictions of kinase-specific phosphorylation sites have not successfully pursued and remained to be a great challenge. In this work, we raised a "kiss farewell" model and conducted a high-throughput prediction of cAMP-dependent kinase (PKA) phosphorylation sites. Since a protein kinase (PK) should at least "kiss" its substrates and then run away, we proposed a PKA-binding protein to be a potential PKA substrate if at least one PKA site was predicted. To improve the prediction specificity, we reduced false positive rate (FPR) less than 1% when the cut-off value was set as 4. Successfully, we predicted 1387, 630, 568 and 912 potential PKA sites from 410, 217, 173 and 260 PKA-interacting proteins in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens, respectively. Most of these potential phosphorylation sites remained to be experimentally verified. In addition, we detected two sites in one of PKA regulatory subunits to be conserved in eukaryotes as potentially ancient regulatory signals. Our prediction results provide an excellent resource for delineating PKA-mediated signaling pathways and their system integration underlying cellular dynamics and plasticity.

Reference Type
Journal Article
Authors
Gao X, Jin C, Ren J, Yao X, Xue Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference