Take our Survey

Reference: Nyola A and Hunte C (2008) A structural analysis of the transient interaction between the cytochrome bc(1) complex and its substrate cytochrome c. Biochem Soc Trans 36(Pt 5):981-5

Reference Help

Abstract


In cellular respiration, cytochrome c transfers electrons from the cytochrome bc(1) complex to cytochrome c oxidase by transiently binding to the membrane proteins. The first X-ray structure of the yeast cytochrome bc(1) complex with bound cytochrome c revealed the general architecture of the electron-transfer complex. The interface of the complex is small. The haem moieties are centrally located in a mainly non-polar contact site, which includes a cation-pi interaction and is surrounded by complementary charged residues. Only one cytochrome c(1)-docking site of the dimeric complex is occupied with cytochrome c. The recent 1.9 A (1 A=0.1 nm) resolution structure of the complex showed that the interface is highly hydrated. With cytochrome c bound, a higher number of interfacial water molecules are present on the cytochrome c(1) interface, whereas its protein surface is not affected. Remarkably, the dimer structure is slightly asymmetric. Univalent cytochrome c binding coincides with conformational changes of the Rieske head domain and subunit QCR6p. Pronounced hydration and a mobility mismatch at the interface with disordered charged residues on the cytochrome c side are favourable for transient binding. Comparison with a new structure of the complex with bound isoform-2 cytochrome c led to the definition of a core interface, which refers to four common interaction pairs including the cation-pi interaction. They encircle the haem groups and are surrounded by variable interactions. The core interface may be a feature to gain specificity for formation of the reactive complex. The consistency in the binding interaction despite differences in primary sequence, redox state and crystal contacts, together with crystallization at physiological ionic strength, clearly suggest that the structures show the native bound state of the electron-transfer complex.

Reference Type
Journal Article
Authors
Nyola A, Hunte C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference