Take our Survey

Reference: Schafer G, et al. (2008) The Saccharomyces cerevisiae linker histone Hho1p is essential for chromatin compaction in stationary phase and is displaced by transcription. Proc Natl Acad Sci U S A 105(39):14838-43

Reference Help

Abstract


The importance of core histones in the regulation of DNA function by chromatin is clear. However, little is known about the role of the linker histone. We investigated the role of H1 in Saccharomyces cerevisiae during extensive transcriptional reprogramming in stationary phase. Although the levels of linker histone Hho1p remained constant during growth to semiquiescence, there was a genome-wide increase in binding to chromatin. Hho1p was essential for compaction of chromatin in stationary phase, but not for general transcriptional repression. A clear, genome-wide anticorrelation was seen between the level of bound Hho1p and gene expression. Surprisingly, the rank order of gene activity was maintained even in the absence of Hho1p. Based on these findings, we suggest that linker histone Hho1p has a limited role in transcriptional regulation and that the dynamically exchanging linker histone may be evicted from chromatin by transcriptional activity.

Reference Type
Journal Article
Authors
Schafer G, McEvoy CR, Patterton HG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference