Take our Survey

Reference: Kishi T, et al. (2008) A refined two-hybrid system reveals that SCFCdc4-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc Natl Acad Sci U S A 105(38):14497-502

Reference Help

Abstract

Ubiquitin-dependent degradation is implicated in various cellular regulatory mechanisms. The SCF(Cdc4) (Skp1, Cullin/Cdc53, and the F-box protein Cdc4) complex is an ubiquitin ligase complex that acts as a regulator of cell cycle, signal transduction, and transcription. These regulatory mechanisms are not well defined because of the difficulty in identifying the interaction between ubiquitin ligases and their substrates. To identify substrates of the yeast SCF(Cdc4) ubiquitin ligase complex, we refined the yeast two-hybrid system to allow screening Cdc4-substrate interactions under conditions of substrate stabilization, and identified Swi5 as a substrate of the SCF(Cdc4) complex. Swi5 is the transcriptional activator of Sic1, the inhibitor of S phase cyclin-dependent kinases (CDKs). We showed that Swi5 is indeed ubiquitinated and degraded through the SCF(Cdc4) complex. Furthermore, the SCF(Cdc4)-dependent degradation of Swi5 was required to terminate SIC1 transcription at early G(1) phase, which ensured efficient entry into S phase: Hyperaccumulation of Sic1 was noted in cells expressing stabilized Swi5, and expression of stabilized Swi5 delayed S phase entry, which was dominantly suppressed by SIC1 deletion. These findings indicate that the SCF(Cdc4) complex regulates S phase entry not only through degradation of Sic1, but also through degradation of Swi5.

Reference Type
Journal Article
Authors
Kishi T, Ikeda A, Koyama N, Fukada J, Nagao R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference