Reference: Sellick CA, et al. (2008) Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. Int Rev Cell Mol Biol 269:111-50

Reference Help

Abstract


The enzymes of the Leloir pathway catalyze the conversion of galactose to a more metabolically useful version, glucose-6-phosphate. This pathway is required as galactose itself cannot be used for glycolysis directly. In most organisms, including the yeast Saccharomyces cerevisiae, five enzymes are required to catalyze this conversion: a galactose mutarotase, a galactokinase, a galactose-1-phosphate uridyltransferase, a UDP-galactose-4-epimerase, and a phosphoglucomutase. In yeast, the genes encoding these enzymes are tightly controlled at the level of transcription and are only transcribed under specific sets of conditions. In the presence of glucose, the genes encoding the Leloir pathway enzymes (often called the GAL genes) are repressed through the action of a transcriptional repressor Mig1p. In the presence of galactose, but in the absence of glucose, the concerted actions of three other proteins Gal4p, Gal80p, and Gal3p, and two small molecules (galactose and ATP) enable the rapid and high-level activation of the GAL genes. The precise molecular mechanism of the GAL genetic switch is controversial. Recent work on solving the three-dimensional structures of the various GAL enzymes proteins and the GAL transcriptional switch proteins affords a unique opportunity to delve into the precise, and potentially unambiguous, molecular mechanism of a highly exploited transcriptional circuit. Understanding the details of the transcriptional and metabolic events that occur in this pathway can be used as a paradigm for understanding the integration of metabolism and transcriptional control more generally, and will assist our understanding of fundamental biochemical processes and how these might be exploited.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Sellick CA, Campbell RN, Reece RJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference