Take our Survey

Reference: Mirzaei H and Regnier F (2008) Protein:protein aggregation induced by protein oxidation. J Chromatogr B Analyt Technol Biomed Life Sci 873(1):8-14

Reference Help

Abstract


When the level of reactive oxygen species (ROS) in cells exceeds a genetically coded defense capacity, the cells experience damage to vital components such as DNA, proteins and lipids that leads to non-specific interactions and the production of a series of high molecular weight protein aggregates. The dynamics of oxidative stress induced aggregation were studied here using model proteins and yeast. Model proteins were oxidized at increasing ROS concentrations and analyzed using size exclusion chromatography (SEC). Changes in the SEC elution profile showed that aggregation happens in stages and protein fragments produced as a result of oxidation also give rise to aggregates. Yeast cells were stressed with hydrogen peroxide to investigate in vivo aggregation. Equal amounts from control and oxidized lysates were chromatographed on a size exclusion column and proteins of molecular weight exceeding 700kDa were collected from both samples which were then differentially labeled using light and heavy isotope coded N-acetoxysuccinamide and mixed in a 1:1 ratio. The coded mixture was analyzed using LC/MS and peptides that appeared as singlets representing the proteins that aggregated with higher molecular mass protein complexes were identified. Twenty-five proteins were identified to be of this type. Fifteen members in this group were found to have been carbonylated. These proteins are part of the proteome known as the aggresome. The protein content of the aggresome may provide vital information for mechanistic studies targeting disease and aging.

Reference Type
Journal Article
Authors
Mirzaei H, Regnier F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference