Reference: Guo N, et al. (2008) Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine. Yeast 25(9):631-41

Reference Help

Abstract


Dictamnine, a natural plant product, has been reported to have antimicrobial activity against bacteria and fungi; however, the dictamnine response mechanisms of microorganisms are still poorly understood. We have shown that dictamnine has antimicrobial activities against the model fungus Saccharomyces cerevisiae, with a minimum inhibitory concentration (MIC) value of 64 microg/ml. Commercial oligonucleotide microarrays were used to determine the global transcriptional response of S. cerevisiae triggered by treatment with dictamnine. We interpreted our microarray data using the hierarchical clustering tool, T-profiler. Several major transcriptional responses were induced by dictamnine. The first was the induced environmental stress response, mainly under the control of the Msn2p and Msn4p transcription factors, and the repressed environmental stress response in genes containing the PAC (RNA polymerase A and C box) and rRPE (ribosomal RNA processing element) motifs. The second was the Upc2p-mediated response involved in lipid biosynthesis. The third comprised the PDR3- and RPN4-mediated responses involved in multidrug resistance (MDR). Finally, the TBP-mediated response was induced with dictamnine treatment. TBP is an essential general transcription factor involved in directing the transcription of genes. Quantitative real-time RT-PCR was performed on selected genes to verify the microarray results. Furthermore, morphological transitions during dictamnine exposure to S. cerevisiae L1190 (MATa/alpha) were examined, using confocal laser microscopy. Copyright (c) 2008 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Guo N, Yu L, Meng R, Fan J, Wang D, Sun G, Deng X
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference