Reference: Chan K and Roth MB (2008) Anoxia-induced suspended animation in budding yeast as an experimental paradigm for studying oxygen-regulated gene expression. Eukaryot Cell 7(10):1795-808

Reference Help

Abstract


A lack of oxygen can force many organisms to enter into recoverable hypometabolic states. To better understand how organisms cope with oxygen deprivation, our laboratory previously had shown that when challenged with anoxia, both the nematode Caenorhabditis elegans and embryos of the zebrafish Danio rerio enter into suspended animation, in which all life processes that can be observed by light microscopy reversibly halt pending the restoration of oxygen (P. A. Padilla and M. B. Roth, Proc. Natl. Acad. Sci. USA 98:7331-7335, 2001, and P. A. Padilla, T. G. Nystul, R. A. Zager, A. C. Johnson, and M. B. Roth, Mol. Biol. Cell 13:1473-1483, 2002). Here, we show that both sporulating and vegetative cells of the budding yeast Saccharomyces cerevisiae also enter into a similar state of suspended animation when made anoxic on a nonfermentable carbon source. Transcriptional profiling using cDNA microarrays and follow-on quantitative real-time PCR analysis revealed a relative derepression of aerobic metabolism genes in carbon monoxide (CO)-induced anoxia when compared to nitrogen (N(2)) gas-induced anoxia, which is consistent with the known oxygen-mimetic effects of CO. We also found that mutants deleted for components of the mitochondrial retrograde signaling pathway can tolerate prolonged exposure to CO but not to N(2). We conclude that the cellular response to anoxia is dependent on whether the anoxic gas is an oxygen mimetic and that the mitochondrial retrograde signaling pathway is functionally important for mediating this response.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Chan K, Roth MB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference