Take our Survey

Reference: Schweitzer-Stenner R (2008) Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy. J Phys Chem B 112(33):10358-66

Reference Help

Abstract

Electronic circular dichroism (ECD) is a valuable tool to explore the secondary and tertiary structure of proteins. With respect to heme proteins, the corresponding visible ECD spectra, which probe the chirality of the heme environment, have been used to explore functionally relevant structural changes in the heme vicinity. While the physical basis of the obtained ECD signal has been analyzed by Woody and co-workers in terms of multiple electronic coupling mechanism between the electronic transitions of the heme chromophore and of the protein (Hsu, M.C.; Woody, R.W. J. Am. Chem. Soc. 1971, 93, 3515), a theory for a detailed quantitative analysis of ECD profiles has only recently been developed (Schweitzer-Stenner, R.; Gorden, J. P.; Hagarman, A. J. Chem. Phys. 2007, 127, 135103). In the present study this theory is applied to analyze the visible ECD-spectra of both oxidation states of three cytochromes c from horse, cow and yeast. The results reveal that both B- and Q-bands are subject to band splitting, which is caused by a combination of electronic and vibronic perturbations. The B-band splittings are substantially larger than the corresponding Q-band splittings in both oxidation states. For the B-bands, the electronic contribution to the band splitting can be assigned to the internal electric field in the heme pocket, whereas the corresponding Q-band splitting is likely to reflect its gradient (Manas, E. S.; Vanderkooi, J. M.; Sharp, K. A. J. Phys. Chem. B 1999, 103, 6344). We found that the electronic and vibronic splitting is substantially larger in the oxidized than in the reduced state. Moreover, these states exhibit different signs of electronic splitting. These findings suggest that the oxidation process increases the internal electric field and changes its orientation with respect to the molecular coordinate system associated with the N-Fe-N lines of the heme group. For the reduced state, we used our data to calculate electric field strengths between 27 and 31 MV/cm for the investigated cytochrome c species. The field of the oxidized state is more difficult to estimate, owing to the lack of information about its orientation in the heme plane. Based on band splitting and the wavenumber of the band position we estimated a field-strength of ca. 40 MV/cm for oxidized horse heart cytochrome c. The thus derived difference between the field strengths of the oxidized and reduced state would contribute at least -55 kJ/mol to the enthalpic stabilization of the oxidized state. Our data indicate that the corresponding stabilization energy of yeast cytochrome c is smaller.

Reference Type
Journal Article
Authors
Schweitzer-Stenner R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference