Take our Survey

Reference: Kim J, et al. (2008) Different levels of Bfa1/Bub2 GAP activity are required to prevent mitotic exit of budding yeast depending on the type of perturbations. Mol Biol Cell 19(10):4328-40

Reference Help

Abstract


Monitoring Editor: Tim Stearns In budding yeast, Tem1 is a key regulator of mitotic exit. Bfa1/Bub2 stimulates Tem1 GTPase activity as a GTPase-activating protein (GAP). Lte1 possesses a guanine-nucleotide exchange factor (GEF) domain likely for Tem1. However, recent observations showed that cells may control mitotic exit without either Lte1 or Bfa1/Bub2 GAP activity, obscuring how Tem1 is regulated. Here, we assayed BFA1 mutants with varying GAP activities for Tem1, showing for the first time that Bfa1/Bub2 GAP activity inhibits Tem1 in vivo. A decrease in GAP activity allowed cells to bypass mitotic exit defects. Interestingly, different levels of GAP activity were required to prevent mitotic exit depending on the type of perturbation. Although essential, more Bfa1/Bub2 GAP activity was needed for spindle damage than for DNA damage to fully activate the checkpoint. Conversely, Bfa1/Bub2 GAP activity was insufficient to delay mitotic exit in cells with misoriented spindles. Instead, decreased interaction of Bfa1 with Kin4 was observed in BFA1 mutant cells with a defective spindle position checkpoint. These findings demonstrate that there is a GAP-independent surveillance mechanism of Bfa1/Bub2, which, together with the GTP/GDP switch of Tem1, may be required for the genomic stability of cells with misaligned spindles.

Reference Type
Journal Article
Authors
Kim J, Jang SS, Song K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference