Reference: Hlynialuk C, et al. (2008) Nsf1/Ypl230w participates in transcriptional activation during non-fermentative growth and in response to salt stress in Saccharomyces cerevisiae. Microbiology 154(Pt 8):2482-91

Reference Help

Abstract


In Saccharomyces cerevisiae, fermentable carbon sources such as glucose and fructose are preferred and elicit glucose repression of genes needed to metabolize non-fermentable carbon sources such as glycerol, ethanol and acetate. Different sets of transcription factors are needed to adjust to specific carbon conditions. For example, Mig1 and Mig2 repress the transcription of gluconeogenic and respiratory genes in the presence of abundant glucose, while the transcriptional activation of these genes depends on transcription factors such as Adr1 and Cat8. Here we show that Ypl230w, which we renamed to Nsf1 (nutrient and stress factor 1), is expressed and localizes to the nucleus under non-fermentable carbon conditions to activate gene transcription. Specifically, the transcriptional activation of ACS1, CIT2 and IDH1 is shown to be partially dependent on intact NSF1. Similarly, the transcriptional activation of ENA1 is impaired in the nsf1Delta mutant in response to high concentrations of NaCl, implying that NSF1 is also needed for the yeast response to sodium stress. The carbon- and NaCl-mediated transcriptional activation of ENA1 is dependent on Nsf1. This finding implies that the yeast response to non-fermentable carbon and salt stress is at least partially dependent on NSF1.

Reference Type
Journal Article
Authors
Hlynialuk C, Schierholtz R, Vernooy A, van der Merwe G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference