Take our Survey

Reference: Solieri L, et al. (2008) Mitochondrial inheritance and fermentative: oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum. Yeast 25(7):485-500

Reference Help

Abstract

Breeding between Saccharomyces species is a useful tool for obtaining improved wine yeast strains, combining fermentative features of parental species. In this work, 25 artificial Saccharomyces cerevisiae x Saccharomyces uvarum hybrids were constructed by spore conjugation. A multi-locus PCR-restriction fragment length polymorphism (PCR-RFLP) analysis, targeting six nuclear gene markers and the ribosomal region including the 5.8S rRNA gene and the two internal transcribed spacers, showed that the hybrid genome is the result of two chromosome sets, one coming from S. cerevisiae and the other from S. uvarum. Mitochondrial DNA (mtDNA) typing showed uniparental inheritance in all hybrids. Furthermore, sibling hybrids, obtained by repeated crosses between the same parental strains, showed the same mtDNA, suggesting that the mitochondrial transmission is not stochastic or species-specific, but dependent on the parental strains. Finally four hybrids, two of which with S. cerevisiae mtDNA and two with S. uvarum mtDNA, were subjected to transcriptome analysis. Our results showed that the hybrids bearing S. cerevisiae mtDNA exhibited less expression of genes involved in glycolysis/fermentation pathways and in hexose transport compared to hybrids with S. uvarum mtDNA. Respiration assay confirmed the increased respiratory activity of hybrids with the S. cerevisiae mtDNA genome. These findings suggest that mtDNA type and fermentative: respiratory performances are correlated in S. cerevisiae x S. uvarum hybrids and the mtDNA type is an important trait for constructing new improved hybrids for winemaking. Copyright (c) 2008 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Solieri L, Antunez O, Perez-Ortin JE, Barrio E, Giudici P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference