Reference: Segurado M and Diffley JF (2008) Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev 22(13):1816-27

Reference Help

Abstract


The DNA damage checkpoint plays a crucial role in maintaining functional DNA replication forks when cells are exposed to genotoxic agents. In budding yeast, the protein kinases Mec1 (ATR) and Rad53 (Chk2) are especially important in this process. How these kinases act to stabilize DNA replication forks is currently unknown but is likely to have important implications for understanding how genomic instability is generated during oncogenesis and how chemotherapies that interfere with DNA replication could be improved. Here we show that the sensitivity of rad53 mutants to DNA-damaging agents can be almost completely suppressed by deletion of the EXO1 gene, which encodes an enigmatic flap endonuclease. Deletion of EXO1 also suppresses DNA replication fork instability in rad53 mutants. Surprisingly, deletion of EXO1 is completely ineffective in suppressing both the sensitivity and replication fork breakdown in mec1 mutants, indicating that Mec1 has a genetically separable role in replication fork stabilization from Rad53. Finally, our analysis indicates that a second downstream effector kinase, Chk1, can stabilize replication forks in the absence of Rad53. These results reveal previously unappreciated complexity in the downstream targets of the checkpoint kinases and provide a framework for elucidating the mechanisms of DNA replication fork stabilization by these kinases.

Reference Type
Journal Article
Authors
Segurado M, Diffley JF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference