Reference: He XC, et al. (2008) Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules. J Exp Bot 59(10):2687-95

Reference Help

Abstract


Microtubules are a major structural component of the cytoskeleton and participate in cell division, intracellular transport, and cell morphogenesis. In the present study, 795 cotton tubulin expressed sequence tags were analysed and 19 beta-tubulin genes (TUB) cloned from a cotton cDNA library. Among the group, 12 cotton TUBs (GhTUBs) are reported for the first time here. Transcription profiling revealed that nine GhTUBs were highly expressed in elongating fibre cells as compared with fuzzless-lintless mutant ovules. Treating cultured wild-type cotton ovules with exogenous phytohormones showed that individual genes can be induced by different agents. Gibberellin induced expression of GhTUB1 and GhTUB3, ethylene induced expression of GhTUB5, GhTUB9, and GhTUB12, brassinosteroids induced expression of GhTUB1, GhTUB3, GhTUB9, and GhTUB12, and lignoceric acid induced expression of GhTUB1, GhTUB3, and GhTUB12. When GhTUBs were transformed into the Saccharomyces cerevisiae inviable mutant, tub2, which is deficient in beta-tubulin, one ovule-specific and eight of nine fibre-preferential GhTUBs rescued this lethality. This study suggests that the proteins encoded by cotton GhTUBs are involved during cotton fibre development.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
He XC, Qin YM, Xu Y, Hu CY, Zhu YX
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference