Reference: Roussel X, et al. (2008) Evidence for the formation of a covalent thiosulfinate intermediate with peroxiredoxin in the catalytic mechanism of sulfiredoxin. J Biol Chem 283(33):22371-82

Reference Help

Abstract


The typical 2-Cys peroxiredoxins are thiol-peroxidases involved in the physiology of hydrogen peroxide not only as a toxic, but also as a signaling molecule. Coordination of these functions depends on the sulfinylation of the catalytic Cys, a modification reversed by the ATP-dependent sulfiredoxin, which specifically reduces the sulfinic acid group of overoxidized 2-Cys peroxiredoxins into a sulfenic acid. Sulfiredoxin was originally proposed to operate by covalent catalysis, with formation of a peroxiredoxin-sulfiredoxin intermediate linked by a thiosulfinate bond between the catalytic Cys of both partners, a hypothesis rejected by a study on the human enzyme. To settle the argument, we investigated the catalytic mechanism of Saccharomyces cerevisiae sulfiredoxin, by the characterization of the nature and kinetics of formation of the protein species formed between sulfiredoxin and its substrate in the presence of ATP, using mutants of the non-essential Cys residues of both proteins. We observed the formation of a DTT-reducible peroxiredoxin-sulfiredoxin species by SDS-PAGE and western blot analysis, which mass was shown to correspond to a thiosulfinate complex by high resolution mass spectrometry coupled to liquid chromatography. We next measured indirectly and directly a rate constant of formation of the thiosulfinate species of ca. 2 min-1, for both wild-type and mutant sulfiredoxins, at least equal to the steady state rate constant of the reaction, with a stoichiometry of 1:1 relative to peroxiredoxin. Taken altogether, our results strongly argue in favor of the formation of a covalent thiosulfinate peroxiredoxin-sulfiredoxin species as an intermediate on the catalytic pathway.

Reference Type
Journal Article
Authors
Roussel X, Bechade G, Kriznik A, Van Dorsselaer A, Sanglier-Cianferani S, Branlant G, Rahuel-Clermont S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference