Take our Survey

Reference: Chu Y, et al. (2007) Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J 26(22):4646-56

Reference Help

Abstract


The Bur1-Bur2 and Paf1 complexes function during transcription elongation and affect histone modifications. Here we describe new roles for Bur1-Bur2 and the Paf1 complex. We find that histone H3 K36 tri-methylation requires specific components of the Paf1 complex and that K36 tri-methylation is more strongly affected at the 5' ends of genes in paf1delta and bur2delta strains in parallel with increased acetylation of histones H3 and H4. Interestingly, the 5' increase in histone acetylation is independent of K36 methylation, and therefore is mechanistically distinct from the methylation-driven deacetylation that occurs at the 3' ends of genes. Finally, Bur1-Bur2 and the Paf1 complex have a second methylation-independent function, since bur2delta set2delta and paf1delta set2delta double mutants display enhanced histone acetylation at the 3' ends of genes and increased cryptic transcription initiation. These findings identify new functions for the Paf1 and Bur1-Bur2 complexes, provide evidence that histone modifications at the 5' and 3' ends of coding regions are regulated by distinct mechanisms, and reveal that the Bur1-Bur2 and Paf1 complexes repress cryptic transcription through a Set2-independent pathway.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Chu Y, Simic R, Warner MH, Arndt KM, Prelich G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference