Reference: Ciais D, et al. (2008) The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3' processing pathway. Nucleic Acids Res 36(9):3075-84

Reference Help

Abstract


Microarray analyses of mRNAs over-expressed in strains lacking the nuclear exosome component Rrp6 identified the transcript encoding the ARE-binding protein Cth2, which functions in cytoplasmic mRNA stability. Subsequent northern analyses revealed that exosome mutants accumulate a 3'-extended transcript at the expense of the mature CTH2 mRNA. The 3' ends of the CTH2 mRNA were mapped to a [GU(3-5)](5) repeat, unlike any previously characterized polyadenylation site. CTH2 mRNA accumulation was not inhibited by mutations in 3'-cleavage and polyadenylation factors, Rna14, Rna15 and Pap1, which block accumulation of other mRNAs. The 3'-extended CTH2 pre-mRNA strongly accumulated in strains with mutations in the TRAMP4 polyadenylation complex or the Nrd1/Nab3/Sen1 complex, and contains multiple Nrd1 and Nab3 binding sites. CTH2 carries a consensus ARE element and levels of the pre-mRNA and mRNA were elevated by mutation of the ARE or inactivation of the nuclear 5'-exonuclease Rat1. We propose that CTH2 mRNA is processed from a 3'-extended primary transcript by the exosome, TRAMP and Nrd1/Nab3/Sen1 complexes. This unusual pathway may allow time for nuclear, ARE-mediated regulation of CTH2 levels involving Rat1.

Reference Type
Journal Article
Authors
Ciais D, Bohnsack MT, Tollervey D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference