Take our Survey

Reference: Ruiz A, et al. (2008) Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. J Biol Chem 283(20):13923-33

Reference Help

Abstract

Failure to use glucose as carbon source results in transcriptional activation of numerous genes whose expression is otherwise repressed. HXT2 encodes a yeast high-affinity glucose transporter that is only expressed under conditions of glucose limitation. We show that HXT2 is rapidly and potently induced by environmental alkalinization and this requires both the Snf1 and the calcineurin pathways. Regulation by calcineurin is mediated by the transcription factor Crz1, which rapidly translocates to the nucleus upon high pH stress, and acts through a previously unnoticed Crz1-binding element (CDRE) in the HXT2 promoter (-507 GGGGCTG -501). We demonstrate that, in addition to HXT2, many other genes required for adaptation to glucose shortage, such as HXT7, MDH2 or ALD4, transcriptionally respond to calcium and high pH signaling through binding of Crz1 to their promoters. Therefore, calcineurin-dependent transcriptional regulation appears to be a common feature for many genes encoding carbohydrate-metabolizing enzymes. Remarkably, extracellular calcium allows growth of a snf1 mutant on low glucose in a calcineurin/Crz1 dependent-manner, indicating that activation of calcineurin is sufficient to override a major deficiency in the glucose-repression pathway. We propose that alkalinization of the medium results in impaired glucose utilization and that activation of certain glucose-metabolizing genes by calcineurin contributes to yeast survival under this stress situation.

Reference Type
Journal Article
Authors
Ruiz A, Serrano R, Arino J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference