Reference: Buziol S, et al. (2008) Dynamic response of the expression of hxt1, hxt5 and hxt7 transport proteins in Saccharomyces cerevisiae to perturbations in the extracellular glucose concentration. J Biotechnol 134(3-4):203-10

Reference Help

Abstract


Glucose transport in Saccharomyces cerevisiae relies on a multi-factorial uptake system. The modulation of its efficiency depends on the differential expression of various sets of hexose transport-related proteins whose glucose affinity differs considerably. The expression of three different glucose transport proteins (HXT1, HXT5 and HXT6/7 with low-, intermediate- and high-affinity, respectively) was monitored as a result of modified extracellular glucose concentrations. Cultivation at glucose-limited (continuous) conditions was instantly replaced by a batch (and thus, non-limited) mode. Further, to mimic concentration gradients in large-scale production bioreactors, multiple and rapid transient glucose pulses were applied to chemostat cultivation. Antibodies against the HXT-proteins were used to monitor the proteins' expression levels prior to and after perturbing the external glucose concentrations. HXT5 and HXT6/7 were either expressed during the starvation-like steady-state phases in the chemostat cultivations, whereas HXT1 could not be detected at all. HXT1, however, is subsequently expressed during the excess of glucose in the batch mode, while the HXT5 and HXT6/7 transporters were at least found to decline. These findings coincide well with the transporters' affinity profiles. As a result of repeated and rapid transient glucose pulses during continuous fermentation, especially HXT6/7 pointed out to alter the protein expression pattern.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Buziol S, Warth L, Magario I, Freund A, Siemann-Herzberg M, Reuss M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference