Reference: Laliberte J and Labbe S (2008) [The molecular bases for copper uptake and distribution: lessons from yeast.] Med Sci (Paris) 24(3):277-283

Reference Help

Abstract


Copper exists in two oxidation states, cuprous (Cu1+) and cupric (Cu2+), which, respectively, can donate or accept electrons. The fact that copper has two readily interconvertible redox states makes it a catalytic co-factor for many important enzymes. Over the past years, work in a number of laboratories has clearly demonstrated that studies in yeast have served as a springboard for identifying cellular components and processes involved in copper uptake and distribution. In several cases, it has been shown that mammalian proteins are capable of functionally replacing yeast proteins, thereby revealing their remarkable functional conservation. For high-affinity copper transport into cells, it has been shown that copper transporters of the Ctr family are required. Upon entering the cell, copper is partitioned to different proteins and into different compartments within the cell. Given the potential toxicity of copper, specialized proteins bind copper after it enters the cell and subsequently donate the bound copper to their corresponding recipient proteins. Three copper-binding proteins, Ccs1, Cox17, and Atx1, have been identified that serve as "copper chaperones" to deliver copper. double dagger.

Reference Type
Journal Article
Authors
Laliberte J, Labbe S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference