Reference: Archer CT, et al. (2008) Activation domain-dependent monoubiquitylation of Gal4 protein is essential for promoter binding in vivo. J Biol Chem 283(18):12614-23

Reference Help

Abstract


The Saccharomyces cerevisiae Gal4 protein is a paradigmatic transcriptional activator containing a C-terminal acidic activation domain (AD) of 34 amino acids. A mutation that results in the truncation of about two-thirds of the Gal4AD (gal4D) results in a crippled protein with only 3% the activity of the wild-type activator. We show here that although the Gal4D protein is not intrinsically deficient in DNA binding, it is nonetheless unable to stably occupy GAL promoters in vivo. This is because of the activity of the proteasomal ATPases, including Sug1/Rpt6, which bind to Gal4D via the remainder of the AD and strip it off of DNA. A mutation that suppressed the Gal4D "no growth on galactose" phenotype repressed the stripping activity of the ATPase complex but not other activities. We further demonstrate that Gal4D is hypersensitive to this stripping activity because of its failure to be monoubiquitylated efficiently in vivo and in vitro. Evidence is presented that the piece of the AD that is deleted in Gal4D protein is likely a recognition element for the E3 ubiquitin-protein ligase that modifies Gal4. These data argue that acidic ADs comprise at least two small peptide subdomains, one of which is responsible for activator monoubiquitylation and another that interacts with the proteasomal ATPases, coactivators and other transcription factors. This study validates the physiological importance of Gal4 monoubiquitylation and clarifies its major role as that of protecting the activator from being destabilized by the proteasomal ATPases.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Archer CT, Delahodde A, Gonzalez F, Johnston SA, Kodadek T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference